Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 382: 109718, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209940

RESUMO

BACKGROUND: FMRI resting state networks (RSNs) are used to characterize brain disorders. They also show extensive heterogeneity across patients. Identifying systematic differences between RSNs in patients, i.e. discovering neurofunctional subtypes, may further increase our understanding of disease heterogeneity. Currently, no methodology is available to estimate neurofunctional subtypes and their associated RSNs simultaneously. NEW METHOD: We present an unsupervised learning method for fMRI data, called Clusterwise Independent Component Analysis (C-ICA). This enables the clustering of patients into neurofunctional subtypes based on differences in shared ICA-derived RSNs. The parameters are estimated simultaneously, which leads to an improved estimation of subtypes and their associated RSNs. RESULTS: In five simulation studies, the C-ICA model is successfully validated using both artificially and realistically simulated data (N = 30-40). The successful performance of the C-ICA model is also illustrated on an empirical data set consisting of Alzheimer's disease patients and elderly control subjects (N = 250). C-ICA is able to uncover a meaningful clustering that partially matches (balanced accuracy = .72) the diagnostic labels and identifies differences in RSNs between the Alzheimer and control cluster. COMPARISON WITH OTHER METHODS: Both in the simulation study and the empirical application, C-ICA yields better results compared to competing clustering methods (i.e., a two step clustering procedure based on single subject ICA's and a Group ICA plus dual regression variant thereof) that do not simultaneously estimate a clustering and associated RSNs. Indeed, the overall mean adjusted Rand Index, a measure for cluster recovery, equals 0.65 for C-ICA and ranges from 0.27 to 0.46 for competing methods. CONCLUSIONS: The successful performance of C-ICA indicates that it is a promising method to extract neurofunctional subtypes from multi-subject resting state-fMRI data. This method can be applied on fMRI scans of patient groups to study (neurofunctional) subtypes, which may eventually further increase understanding of disease heterogeneity.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Análise por Conglomerados , Simulação por Computador , Doença de Alzheimer/diagnóstico por imagem , Mapeamento Encefálico/métodos
2.
Appetite ; 176: 106136, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697153

RESUMO

The rapidly increasing prevalence of overweight and obesity has heightened the need for a better understanding of obesity-related eating patterns and dietary behaviours. Recent work suggests that distracted eating is causally related to increased immediate and later food, pushing the need for a better understanding of the prevalence of distracted consumption and how this relates to body weight. To extract insights in the relationship between demographics, daily consumption settings, and BMI, we performed secondary data analyses on data from 1011 individuals representative of the Dutch population (adults, 507F, BMI 17-50 kg/m2). The most commonly reported distractions were talking to others (32.7%) and watching television (21.7%). Only 18.4% of respondents reported no distractions during meals. To examine how different distractions related to BMI, we performed OLS regression which showed, among other things, that watching tv while eating lunch (η2 = 0.37) and working during dinner were associated with a higher BMI (η2 = 1.63). To examine the robustness of these findings, machine learning techniques were used. A random forest analysis (RMSE = 4.09) showed that next to age and education level, distraction during lunch and snack was amongst the largest predictors of BMI. Multiple linear regression with lasso penalty (RMSE = 4.13) showed that specifically watching tv while eating lunch or snacks was associated with a higher BMI. In conclusion, our analyses confirmed the assumption that people are regularly distracted during their daily meals, with distinct distractors relating to BMI. These findings provide a starting point for evidence-based recommendations on which consumption settings are associated with healthier eating patterns and body weight.


Assuntos
Comportamento Alimentar , Refeições , Adulto , Índice de Massa Corporal , Peso Corporal , Humanos , Obesidade/epidemiologia , Televisão
3.
Front Neurosci ; 16: 830630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546881

RESUMO

Multi-view data refers to a setting where features are divided into feature sets, for example because they correspond to different sources. Stacked penalized logistic regression (StaPLR) is a recently introduced method that can be used for classification and automatically selecting the views that are most important for prediction. We introduce an extension of this method to a setting where the data has a hierarchical multi-view structure. We also introduce a new view importance measure for StaPLR, which allows us to compare the importance of views at any level of the hierarchy. We apply our extended StaPLR algorithm to Alzheimer's disease classification where different MRI measures have been calculated from three scan types: structural MRI, diffusion-weighted MRI, and resting-state fMRI. StaPLR can identify which scan types and which derived MRI measures are most important for classification, and it outperforms elastic net regression in classification performance.

4.
Neuroimage Clin ; 27: 102303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32554321

RESUMO

Anatomical magnetic resonance imaging (MRI), diffusion MRI and resting state functional MRI (rs-fMRI) have been used for Alzheimer's disease (AD) classification. These scans are typically used to build models for discriminating AD patients from control subjects, but it is not clear if these models can also discriminate AD in diverse clinical populations as found in memory clinics. To study this, we trained MRI-based AD classification models on a single centre data set consisting of AD patients (N = 76) and controls (N = 173), and used these models to assign AD scores to subjective memory complainers (N = 67), mild cognitive impairment (MCI) patients (N = 61), and AD patients (N = 61) from a multi-centre memory clinic data set. The anatomical MRI scans were used to calculate grey matter density, subcortical volumes and cortical thickness, the diffusion MRI scans were used to calculate fractional anisotropy, mean, axial and radial diffusivity, and the rs-fMRI scans were used to calculate functional connectivity between resting state networks and amplitude of low frequency fluctuations. Within the multi-centre memory clinic data set we removed scan site differences prior to applying the models. For all models, on average, the AD patients were assigned the highest AD scores, followed by MCI patients, and later followed by SMC subjects. The anatomical MRI models performed best, and the best performing anatomical MRI measure was grey matter density, separating SMC subjects from MCI patients with an AUC of 0.69, MCI patients from AD patients with an AUC of 0.70, and SMC patients from AD patients with an AUC of 0.86. The diffusion MRI models did not generalise well to the memory clinic data, possibly because of large scan site differences. The functional connectivity model separated SMC subjects and MCI patients relatively good (AUC = 0.66). The multimodal MRI model did not improve upon the anatomical MRI model. In conclusion, we showed that the grey matter density model generalises best to memory clinic subjects. When also considering the fact that grey matter density generally performs well in AD classification studies, this feature is probably the best MRI-based feature for AD diagnosis in clinical practice.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/patologia , Memória/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Disfunção Cognitiva/fisiopatologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação
5.
Brain Commun ; 2(2): fcaa079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33543126

RESUMO

Frontotemporal dementia is a highly heritable and devastating neurodegenerative disease. About 10-20% of all frontotemporal dementia is caused by known pathogenic mutations, but a reliable tool to predict clinical conversion in mutation carriers is lacking. In this retrospective proof-of-concept case-control study, we investigate whether MRI-based and cognition-based classifiers can predict which mutation carriers from genetic frontotemporal dementia families will develop symptoms ('convert') within 4 years. From genetic frontotemporal dementia families, we included 42 presymptomatic frontotemporal dementia mutation carriers. We acquired anatomical, diffusion-weighted imaging, and resting-state functional MRI, as well as neuropsychological data. After 4 years, seven mutation carriers had converted to frontotemporal dementia ('converters'), while 35 had not ('non-converters'). We trained regularized logistic regression models on baseline MRI and cognitive data to predict conversion to frontotemporal dementia within 4 years, and quantified prediction performance using area under the receiver operating characteristic curves. The prediction model based on fractional anisotropy, with highest contribution of the forceps minor, predicted conversion to frontotemporal dementia beyond chance level (0.81 area under the curve, family-wise error corrected P = 0.025 versus chance level). Other MRI-based and cognitive features did not outperform chance level. Even in a small sample, fractional anisotropy predicted conversion in presymptomatic frontotemporal dementia mutation carriers beyond chance level. After validation in larger data sets, conversion prediction in genetic frontotemporal dementia may facilitate early recruitment into clinical trials.

6.
J Neurol Neurosurg Psychiatry ; 90(11): 1207-1214, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31203211

RESUMO

BACKGROUND: Multimodal MRI-based classification may aid early frontotemporal dementia (FTD) diagnosis. Recently, presymptomatic FTD mutation carriers, who have a high risk of developing FTD, were separated beyond chance level from controls using MRI-based classification. However, it is currently unknown how these scores from classification models progress as mutation carriers approach symptom onset. In this longitudinal study, we investigated multimodal MRI-based classification scores between presymptomatic FTD mutation carriers and controls. Furthermore, we contrasted carriers that converted during follow-up ('converters') and non-converting carriers ('non-converters'). METHODS: We acquired anatomical MRI, diffusion tensor imaging and resting-state functional MRI in 55 presymptomatic FTD mutation carriers and 48 healthy controls at baseline, and at 2, 4, and 6 years of follow-up as available. At each time point, FTD classification scores were calculated using a behavioural variant FTD classification model. Classification scores were tested in a mixed-effects model for mean differences and differences over time. RESULTS: Presymptomatic mutation carriers did not have higher classification score increase over time than controls (p=0.15), although carriers had higher FTD classification scores than controls on average (p=0.032). However, converters (n=6) showed a stronger classification score increase over time than non-converters (p<0.001). CONCLUSIONS: Our findings imply that presymptomatic FTD mutation carriers may remain similar to controls in terms of MRI-based classification scores until they are close to symptom onset. This proof-of-concept study shows the promise of longitudinal MRI data acquisition in combination with machine learning to contribute to early FTD diagnosis.


Assuntos
Diagnóstico Precoce , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Imagem Multimodal , Mutação , Sintomas Prodrômicos , Adulto , Idoso , Proteína C9orf72/genética , Estudos de Casos e Controles , Feminino , Heterozigoto , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Neuroimagem , Testes Neuropsicológicos , Progranulinas/genética , Fatores de Tempo , Proteínas tau/genética
7.
Hum Brain Mapp ; 40(13): 3769-3783, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099959

RESUMO

Adolescence is the transitional period between childhood and adulthood, characterized by substantial changes in reward-driven behavior. Although reward-driven behavior is supported by subcortical-medial prefrontal cortex (PFC) connectivity, the development of these circuits is not well understood. Particularly, while puberty has been hypothesized to accelerate organization and activation of functional neural circuits, the relationship between age, sex, pubertal change, and functional connectivity has hardly been studied. Here, we present an analysis of resting-state functional connectivity between subcortical structures and the medial PFC, in 661 scans of 273 participants between 8 and 29 years, using a three-wave longitudinal design. Generalized additive mixed model procedures were used to assess the effects of age, sex, and self-reported pubertal status on connectivity between subcortical structures (nucleus accumbens, caudate, putamen, hippocampus, and amygdala) and cortical medial structures (dorsal anterior cingulate, ventral anterior cingulate, subcallosal cortex, frontal medial cortex). We observed an age-related strengthening of subcortico-subcortical and cortico-cortical connectivity. Subcortical-cortical connectivity, such as, between the nucleus accumbens-frontal medial cortex, and the caudate-dorsal anterior cingulate cortex, however, weakened across age. Model-based comparisons revealed that for specific connections pubertal development described developmental change better than chronological age. This was particularly the case for changes in subcortical-cortical connectivity and distinctively for boys and girls. Together, these findings indicate changes in functional network strengthening with pubertal development. These changes in functional connectivity may maximize the neural efficiency of interregional communication and set the stage for further inquiry of biological factors driving adolescent functional connectivity changes.


Assuntos
Cérebro/fisiologia , Conectoma , Desenvolvimento Humano/fisiologia , Rede Nervosa/fisiologia , Puberdade/fisiologia , Adolescente , Desenvolvimento do Adolescente/fisiologia , Adulto , Cérebro/diagnóstico por imagem , Cérebro/crescimento & desenvolvimento , Criança , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Adulto Jovem
8.
Neuroimage Clin ; 22: 101718, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827922

RESUMO

BACKGROUND: Classification models based on magnetic resonance imaging (MRI) may aid early diagnosis of frontotemporal dementia (FTD) but have only been applied in established FTD cases. Detection of FTD patients in earlier disease stages, such as presymptomatic mutation carriers, may further advance early diagnosis and treatment. In this study, we aim to distinguish presymptomatic FTD mutation carriers from controls on an individual level using multimodal MRI-based classification. METHODS: Anatomical MRI, diffusion tensor imaging (DTI) and resting-state functional MRI data were collected in 55 presymptomatic FTD mutation carriers (8 microtubule-associated protein Tau, 35 progranulin, and 12 chromosome 9 open reading frame 72) and 48 familial controls. We calculated grey and white matter density features from anatomical MRI scans, diffusivity features from DTI, and functional connectivity features from resting-state functional MRI. These features were applied in a recently introduced multimodal behavioural variant FTD (bvFTD) classification model, and were subsequently used to train and test unimodal and multimodal carrier-control models. Classification performance was quantified using area under the receiver operator characteristic curves (AUC). RESULTS: The bvFTD model was not able to separate presymptomatic carriers from controls beyond chance level (AUC = 0.582, p = 0.078). In contrast, one unimodal and several multimodal carrier-control models performed significantly better than chance level. The unimodal model included the radial diffusivity feature and had an AUC of 0.642 (p = 0.032). The best multimodal model combined radial diffusivity and white matter density features (AUC = 0.684, p = 0.004). CONCLUSIONS: FTD mutation carriers can be separated from controls with a modest AUC even before symptom-onset, using a newly created carrier-control classification model, while this was not possible using a recent bvFTD classification model. A multimodal MRI-based classification score may therefore be a useful biomarker to aid earlier FTD diagnosis. The exclusive selection of white matter features in the best performing model suggests that the earliest FTD-related pathological processes occur in white matter.

9.
J Am Heart Assoc ; 8(3): e011288, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30717612

RESUMO

Background Cerebral amyloid angiopathy ( CAA ) is a major cause of lobar intracerebral hemorrhage in elderly adults; however, presymptomatic diagnosis of CAA is difficult. Hereditary cerebral hemorrhage with amyloidosis-Dutch type ( HCHWA -D) is a rare autosomal-dominant disease that leads to pathology similar to sporadic CAA . Presymptomatic HCHWA -D mutation carriers provide a unique opportunity to study CAA -related changes before any symptoms have occurred. In this study we investigated early CAA -related alterations in the white matter. Methods and Results We investigated diffusion magnetic resonance imaging ( dMRI ) data for 15 symptomatic and 11 presymptomatic HCHWA -D mutation carriers and 30 noncarrier control participants using 4 different approaches. We looked at (1) the relation between age and global dMRI measures for mutation carriers versus controls, (2) voxel-wise d MRI , (3) independent component-clustered dMRI measures, and (4) structural connectomics between presymptomatic or symptomatic carriers and controls. Fractional anisotropy decreased, and mean diffusivity and peak width of the skeletonized mean diffusivity increased significantly over age for mutation carriers compared with controls. In addition, voxel-wise and independent component-wise fractional anisotropy, and mean diffusivity, and structural connectomics were significantly different between HCHWA -D patients and control participants, mainly in the periventricular frontal and occipital regions and in the occipital lobe. We found no significant differences between presymptomatic carriers and control participants. Conclusions The d MRI technique is sensitive in detecting alterations in symptomatic HCHWA -d carriers but did not show alterations in presymptomatic carriers. This result indicates that d MRI may be less suitable for identifying early white matter changes in CAA .


Assuntos
Precursor de Proteína beta-Amiloide/genética , Angiopatia Amiloide Cerebral Familiar/diagnóstico , DNA/genética , Imagem de Difusão por Ressonância Magnética/métodos , Mutação , Substância Branca/patologia , Adolescente , Adulto , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatia Amiloide Cerebral Familiar/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Hum Brain Mapp ; 40(9): 2711-2722, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803110

RESUMO

Early and accurate mild cognitive impairment (MCI) detection within a heterogeneous, nonclinical population is needed to improve care for persons at risk of developing dementia. Magnetic resonance imaging (MRI)-based classification may aid early diagnosis of MCI, but has only been applied within clinical cohorts. We aimed to determine the generalizability of MRI-based classification probability scores to detect MCI on an individual basis within a general population. To determine classification probability scores, an AD, mild-AD, and moderate-AD detection model were created with anatomical and diffusion MRI measures calculated from a clinical Alzheimer's Disease (AD) cohort and subsequently applied to a population-based cohort with 48 MCI and 617 normal aging subjects. Each model's ability to detect MCI was quantified using area under the receiver operating characteristic curve (AUC) and compared with an MCI detection model trained and applied to the population-based cohort. The AD-model and mild-AD identified MCI from controls better than chance level (AUC = 0.600, p = 0.025; AUC = 0.619, p = 0.008). In contrast, the moderate-AD-model was not able to separate MCI from normal aging (AUC = 0.567, p = 0.147). The MCI-model was able to separate MCI from controls better than chance (p = 0.014) with mean AUC values comparable with the AD-model (AUC = 0.611, p = 1.0). Within our population-based cohort, classification models detected MCI better than chance. Nevertheless, classification performance rates were moderate and may be insufficient to facilitate robust MRI-based MCI detection on an individual basis. Our data indicate that multiparametric MRI-based classification algorithms, that are effective in clinical cohorts, may not straightforwardly translate to applications in a general population.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Vida Independente , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Estudos Retrospectivos
11.
Neuroimage Clin ; 20: 188-196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094168

RESUMO

Background: Classification models based on magnetic resonance imaging (MRI) may aid early diagnosis of frontotemporal dementia (FTD) but have only been applied in established FTD cases. Detection of FTD patients in earlier disease stages, such as presymptomatic mutation carriers, may further advance early diagnosis and treatment. In this study, we aim to distinguish presymptomatic FTD mutation carriers from controls on an individual level using multimodal MRI-based classification. Methods: Anatomical MRI, diffusion tensor imaging (DTI) and resting-state functional MRI data were collected in 55 presymptomatic FTD mutation carriers (8 microtubule-associated protein Tau, 35 progranulin, and 12 chromosome 9 open reading frame 72) and 48 familial controls. We calculated grey and white matter density features from anatomical MRI scans, diffusivity features from DTI, and functional connectivity features from resting-state functional MRI. These features were applied in a recently introduced multimodal behavioural variant FTD (bvFTD) classification model, and were subsequently used to train and test unimodal and multimodal carrier-control models. Classification performance was quantified using area under the receiver operator characteristic curves (AUC). Results: The bvFTD model was not able to separate presymptomatic carriers from controls beyond chance level (AUC = 0.570, p = 0.11). In contrast, one unimodal and several multimodal carrier-control models performed significantly better than chance level. The unimodal model included the radial diffusivity feature and had an AUC of 0.646 (p = 0.021). The best multimodal model combined radial diffusivity and white matter density features (AUC = 0.680, p = 0.005). Conclusions: FTD mutation carriers can be separated from controls with a modest AUC even before symptom-onset, using a newly created carrier-control classification model, while this was not possible using a recent bvFTD classification model. A multimodal MRI-based classification score may therefore be a useful biomarker to aid earlier FTD diagnosis. The exclusive selection of white matter features in the best performing model suggests that the earliest FTD-related pathological processes occur in white matter.


Assuntos
Doenças Assintomáticas , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Heterozigoto , Imageamento por Ressonância Magnética/métodos , Mutação/genética , Adulto , Doenças Assintomáticas/classificação , Imagem de Tensor de Difusão/classificação , Imagem de Tensor de Difusão/métodos , Feminino , Demência Frontotemporal/classificação , Humanos , Imageamento por Ressonância Magnética/classificação , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/classificação , Imagem Multimodal/métodos , Estudos Retrospectivos
12.
J Alzheimers Dis ; 62(4): 1827-1839, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614652

RESUMO

BACKGROUND/OBJECTIVE: Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known. METHODS: Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC). RESULTS: Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41). CONCLUSION: Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Demência Frontotemporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Idoso , Doença de Alzheimer/fisiopatologia , Área Sob a Curva , Encéfalo/fisiopatologia , Diagnóstico Diferencial , Feminino , Demência Frontotemporal/fisiopatologia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Curva ROC , Descanso , Estudos Retrospectivos
13.
Neuroimage ; 167: 62-72, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29155080

RESUMO

Alzheimer's disease (AD) patients show altered patterns of functional connectivity (FC) on resting state functional magnetic resonance imaging (RSfMRI) scans. It is yet unclear which RSfMRI measures are most informative for the individual classification of AD patients. We investigated this using RSfMRI scans from 77 AD patients (MMSE = 20.4 ± 4.5) and 173 controls (MMSE = 27.5 ± 1.8). We calculated i) FC matrices between resting state components as obtained with independent component analysis (ICA), ii) the dynamics of these FC matrices using a sliding window approach, iii) the graph properties (e.g., connection degree, and clustering coefficient) of the FC matrices, and iv) we distinguished five FC states and administered how long each subject resided in each of these five states. Furthermore, for each voxel we calculated v) FC with 10 resting state networks using dual regression, vi) FC with the hippocampus, vii) eigenvector centrality, and viii) the amplitude of low frequency fluctuations (ALFF). These eight measures were used separately as predictors in an elastic net logistic regression, and combined in a group lasso logistic regression model. We calculated the area under the receiver operating characteristic curve plots (AUC) to determine classification performance. The AUC values ranged between 0.51 and 0.84 and the highest were found for the FC matrices (0.82), FC dynamics (0.84) and ALFF (0.82). The combination of all measures resulted in an AUC of 0.85. We show that it is possible to obtain moderate to good AD classification using RSfMRI scans. FC matrices, FC dynamics and ALFF are most discriminative and the combination of all the resting state measures improves classification accuracy slightly.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Conectoma/classificação , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/classificação , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia
14.
Front Aging Neurosci ; 9: 97, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469571

RESUMO

Both normal aging and Alzheimer's disease (AD) have been associated with a reduction in functional brain connectivity. It is unknown how connectivity patterns due to aging and AD compare. Here, we investigate functional brain connectivity in 12 young adults (mean age 22.8 ± 2.8), 12 older adults (mean age 73.1 ± 5.2) and 12 AD patients (mean age 74.0 ± 5.2; mean MMSE 22.3 ± 2.5). Participants were scanned during 6 different sessions with resting state functional magnetic resonance imaging (RS-fMRI), resulting in 72 scans per group. Voxelwise connectivity with 10 functional networks was compared between groups (p < 0.05, corrected). Normal aging was characterized by widespread decreases in connectivity with multiple brain networks, whereas AD only affected connectivity between the default mode network (DMN) and precuneus. The preponderance of effects was associated with regional gray matter volume. Our findings indicate that aging has a major effect on functional brain interactions throughout the entire brain, whereas AD is distinguished by additional diminished posterior DMN-precuneus coherence.

15.
Neuroimage Clin ; 11: 46-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909327

RESUMO

Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.


Assuntos
Doença de Alzheimer/diagnóstico , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/classificação , Disfunção Cognitiva/patologia , Imagem de Tensor de Difusão/métodos , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Substância Branca/patologia
16.
Hum Brain Mapp ; 37(5): 1920-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26915458

RESUMO

Several anatomical MRI markers for Alzheimer's disease (AD) have been identified. Hippocampal volume, cortical thickness, and grey matter density have been used successfully to discriminate AD patients from controls. These anatomical MRI measures have so far mainly been used separately. The full potential of anatomical MRI scans for AD diagnosis might thus not yet have been used optimally. In this study, we therefore combined multiple anatomical MRI measures to improve diagnostic classification of AD. For 21 clinically diagnosed AD patients and 21 cognitively normal controls, we calculated (i) cortical thickness, (ii) cortical area, (iii) cortical curvature, (iv) grey matter density, (v) subcortical volumes, and (vi) hippocampal shape. These six measures were used separately and combined as predictors in an elastic net logistic regression. We made receiver operating curve plots and calculated the area under the curve (AUC) to determine classification performance. AUC values for the single measures ranged from 0.67 (cortical thickness) to 0.94 (grey matter density). The combination of all six measures resulted in an AUC of 0.98. Our results demonstrate that the different anatomical MRI measures contain complementary information. A combination of these measures may therefore improve accuracy of AD diagnosis in clinical practice. Hum Brain Mapp 37:1920-1929, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/classificação , Doença de Alzheimer/diagnóstico por imagem , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...